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ABSTRACT 

Explicit formulas are given for matrix elements of operators commuting with dipa 
and Y*, using complete or partial sets of L-S eigenfunctions as a basis. A computer 
program is described for obtaining such eigenfunctions by direct diagonalixation of 
-Ya + (l/20) Spa, and examples are given. 

INTRODUCTION 

One of the central problems in the quantum mechanics of atoms has been the 
construction and manipulation of electronic wave functions which completely 
characterize the permutational and angular symmetry of the atomic states. The 
earliest approach to this problem was by Slater [l], who introduced the deter- 
minantal wave function and the idea of constructing angular momentum eigen- 
functions as linear combinations of Slater determinants. Because both orbital 
and spin angular momentum must be considered, the formation of appropriate 
combinations of determinants is not always a simple matter, particularly for systems 
with many electrons outside of closed shells. 

For the majority of the atomic systems, it is most convenient to work with the 
angular eigenfunctions appropriate to Russell-Saunders coupling [2], i.e. with 
eigenfunctions of the operators 9, Pz , Y2, and Y= . Diagonal matrix elements for 
these “L-S eigenfunctions” can be evaluated without the need of a prior explicit 
construction of the eigenfunctions themselves, following the elegant procedures 
described by Racah [3]. However, accurate studies of atoms require the simul- 
taneous use of many L-S eigenfunctions, and it is therefore necessary to have means 
of evaluating the off-diagonal matrix elements connecting different eigenfunctions. 

1 This research was supported in part by the National Science Foundation (Grant GP-5555). 
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These off-diagonal elements could be evaluated by an extension of Racah’s methods, 
but it would then be necessary to have extremely large numbers of coefficients of 
fractional parentage and the convenience of the methods would be lost. It thus once 
again seems expedient to follow procedures based on the explicit construction 
of L-S eigenfunctions as linear combinations of Slater determinants. 

The construction of matrix elements between L-S eigenfunctions can be much 
simplified by the use of projection operators and group theory. This application 
of projection operators has been discussed by Lowdin [4], and Nesbet [5] has 
made a detailed study of the most efficient ways to form matrix elements of sym- 
metry-projected wavefunctions. Nesbet’s procedures can be readily adapted to the 
present situation in which appropriate eigenfunctions are explicitly available. The 
specific approach which thereby results also permits a convenient handling of 
problems involving less than a complete set of L-S eigenfunctions of given 
quantum numbers. Such cases arise when certain vector couplings dominate 
others in their contributions to a particular energy level. 

This paper reports a direct diagonalization procedure for generating L-S 
eigenfunctions and gives explicit formulas for the construction of matrix elements. 
A computer program for the eigenfunction generation is described, and typical 
results and computation times are cited. 

MATRIX ELEMENTS 

It is assumed that there are available complete orthonormal sets of L-S eigen- 
functions corresponding to various orbital occupancies. The eigenfunctions of one 
such set, denoted Oi , i = I,..., d, are specified as linear combinations of ortho- 
normal Slater determinants xe , TV = l,..., n: 

ei = i cuixu i=l d ,*.., 
IL=1 

(1) 

It will occasionally be useful to think of the cUi as defining a n x d rectangular 
matrix denoted c. When it is necessary to consider simultaneously two different 
orbital occupancies, let the second occupancy have L-S eigenfunctions 0; , 
i = l,..., d’, formed as linear combinations of Slater determinants XL , p = l,..., n’, 
with coefficient matrix c’. The problem at issue here is simply the evaluation of the 
matrix elements (Oi ) H / OJ and (0; / H 1 0,) in terms of the Slater-determinant 
elements (x0 I H I x0> or (XL I H 1 x,,), for operators H which commute with 
dip2 and Y2 and are totally symmetric with respect to permutations of the particle 
numbering. 
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The first step in solving this problem is to introduce a projection operator 
0 which projects an arbitrary function onto the appropriate eigenspace of Z2 
and Y2. A sufficiently general form of this projector can be written as 

It is clear from Eq. (2) that 0 is idempotent and Hermitian, and the commutation of 
H with P2 and Y2, plus the completeness of the sets 8i and 0: , insure the commuta- 
tion of H with 0 within all matrix elements to be considered here. It should be noted 
that the commutation of H with 0 depends upon the inclusion of the full sets of 
Bi and 0; . By direct application of 0 to xy followed by use of Eq. (I), one may 
obtain the relation 

uxy = t c;ei v = l,..., n 
i=l 

(3) 

where the asterisk indicates complex conjugation. From Eqs. (1) and (3), one may 
also obtain 

@kv = 1 C GkuiXu 
iL=li=l 

(4) 

It is also convenient to express Bi as a linear combination of the Uxy . Ordinarily 
n will be much greater than d, so that the y1 functions Uxy of Eq. (3) will be linearly 
dependent. However, there must exist exactly d linearly independent Ox”, and it 
will be assumed that the xy are ordered in such a way that the first d e)xy form a 
linearly independent set. It will then be possible to invert the first d of Eqs. (3), 
leading to 

ei = f (e*);l uxy i = I,..., d 
b-1 

Here E stands for the square matrix consisting of the first d rows of c. The linear 
independence of the first d Uxy assures the nonsingularity of i?. 

The matrix elements (0: ( H I 0,) may now be expressed in terms of the Oxy with 
the aid of Eq. (5), following which the Hermiticity and commutation properties 
of 0 may be used to eliminate one of its occurrences. The remaining occurrence of 
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Co may then be eliminated according to Eq. (4). These steps are illustrated in the 
following series of equations. 

= $ 5 @‘)1:, @*I;’ (x: I H I Ox,> (6) 

Equation (6) may now be simplified by performing the summation over u, taking 
note of the fact that Cf.E1 (E*);’ c$ = a,, . Summing then also over k, 

(7) 

The matrix element (Oi I H I ej) will have a corresponding form without the primes. 
Equation (7) shows the key result of the present discussion, namely that a d’ x n 

block of Slater-determinant matrix elements is required to generate the entire 
d’ x d matrix for the L-S eigenfunctions. Moreover, the necessary coefficients 
are directly given from the representation of the eigenfunctions as linear combina- 
tions of Slater determinants. The present formulation becomes equivalent to that 
of Nesbet if the eigenfunctions Bi and 0: are transformed to bases in which the 
matrices E and E’ are triangular. Imposition of this condition would reduce still 
further the extents of the summations in Eq. (7), but would interfere with the pro- 
cedures about to be discussed. 

There is one practical observation to be made with respect to Eq. (7). Because H 
is Hermitian, (6: I H 1 Oj) can alternatively be computed as (0, ( H 1 f?:>*, which 
according to Eq. (7), would involve summations of extents d and n’. If dn’ is 
smaller than d’n, the alternative formulation will be computationally more efficient. 

PARTIAL EIGENFUNCTION SETS 

It is well known that d, the number of linearly independent t$ , is rather large for 
many orbital occupancies of interest. However, it is often possible to restrict 
consideration to relatively few of the full set of Oi . For example, consider the 3P 
terms corresponding to the orbital occupancy ls2d122p4. These configurations must 
be added to the Hartree-Fock function ls22s22p4 to obtain an accurate configura- 
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tion-interaction wavefunction for the ground state of oxygen. There are six electrons 
of these terms outside of closed shells, namely d122p4, and these six electrons give 
rise to six linearly independent 3P eigenfunctions, which are expressible as linear 
combinations of 27 Slater determinants. But in a particular basis, only one of these 
3P eigenfunctions contributes significantly to the oxygen wavefunction, namely 
the function usually denoted ls2(d12)% 2p4. (This state of alfairs is not purely 
fortuitous; the other five eigenfunctions involve triple or higher excitations from 
the spinorbitals of the Hartree-Fock function. [6]) The single significant 3P eigen- 
function uses only five of the 27 Slater determinants needed to describe the full 
eigenfunction set, and it is highly desirable to take advantage of the computational 
savings afforded by the restriction of both the Bi and the xy . 

Another, more striking example of the savings possible by using only the signifi- 
cant Bi is illustrated by the orbital occupancy ls2sp,p22p4 for oxygen. This eight- 
electron configuration involves 27 3P eigenfunctions formed from 106 Slater 
determinants. However, only the eigenfunctions of the form (Is2sp,p,)?S 2p4 are 
important, and there are only two such functions, involving 18 Slater determinants. 

The formulation given in Eq. (7) is of precisely the form needed to take advantage 
of the above described situations. It is only necessary to make appropriate restric- 
tion of the values of i and j, dropping also any p or cr values which have vanishing 
contributions for all retained i and j. This means that the calculations will only use 
certain rows of Z-l and certain columns of E, and the presence of suitable zeroes in 
the retained portions of I?-l and c may obviate the need for certain (&, 1 H 1 x,,). 

COMPUTATION OF EIGENFUNCTIONS 

The earliest attempt at systematic generation of more complicated L-S eigen- 
functions was by Johnson [7], who generated matrices of Z2 and Y2 with a Slater- 
determinant basis, and then simultaneously diagonalized these matrices to obtain 
eigenfunctions. More recently Rotenberg [8] developed and programmed an 
approach corresponding to the explicit application of a projection operator to 
convert a Slater determinant into an L-S eigenfunction. 

It seemed to the authors that the direct diagonalization approach was more 
suitable for actual computation on larger systems, and it was elected to achieve a 
simultaneous diagonalization of g2 and Y2 by diagonalizing the matrix of 
g2 + kY2, where k is in principle arbitrary. The eigenvalues of this matrix are 
of the form L(L + 1) + kS(S + l), and a suitable choice of k can cause all the 
possible values of L and S to lead to distinct, well-spaced eigenvalues. In this 
work k was set at l/20. 

A double-precision FORTRAN IV computer program to construct L-S eigen- 
functions by direct diagonalization was written for the IBM 360/67 computer. 
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This program, designated LSDIAG, has been placed in the Quantum Chemistry 
Program Exchange [9] and is available to FORTRAN users. The program is 
divided into three distinct sections. The first section identifies all Slater determinants 
xU which can arise from a given orbital occupancy and values ML = L, MS = S. 
The second section evaluates (x,, 1 dp2 + (l/20) Y2 / xy) by standard techniques. 

The third section of the program finds an orthonormal set of eigenvectors of 
g2 + (l/20) Y2 corresponding to the eigenvalue L(L + 1) + (l/20) S(S + l), 
using a modification of the computer program GIVENS written by Prosser [lo]. 
To avoid the necessity of prior knowledge of the number of L-S eigenfunctions, 
the program finds all the matrix eigenvalues near to the required value. Because of 
the choice ML = L, Ms = S, the smallest matrix eigenvalues are those required. 

Present limitations on the program are: (1) no more than 16 electrons outside 
of closed shells; (2) no more than 200 determinants arising from the specified 
orbital occupancy; (3) no more than 50 L-S eigenfunctions arising from the speci- 
fied orbital occupancy and the specified L and S values. These restrictions are 
necessitated by the memory size of the IBM 360/67 computer on which the program 
was tested. The only problems of potential interest to the authors which exceed 
these limitations are some of the terms least important according to Hund’s rules 
(those with the lowest L and S values) arising from configurations g”, when n > 4. 

The above methods, which lead to complete sets of L-S eigenfunctions, can also 
be used to generate partial sets of the types illustrated in an earlier section. For 
example, the 3P functions of the form (1~2sp,p,)~S 2p4 can be constructed as the 
product of a four-electron ?S function for occupancy 1~2s p1 p2 and a 3P function 
for occupancy 2p4. These functions can be generated by applying the LSDIAG 
program to occupancies ls2sp,p, and 2p4. However, note that to obtain the matrix 
E-l for the eight-electron orbital occupancy 1~2s p1 pa 2p4, the remaining 3P func- 
tions must also be generated by coupling all other ls2sp, p2 and 2p4 states leading 
to 3P. 

RESULTS 

Since the amount of space required to tabulate the L-S eigenfunctions can be 
enormous, only one relatively simple but nonetheless nontrivial example is dis- 
played here. Figure 1 shows the 3P functions arising from the orbital occupancy 
2s2p2 d1 . All three of these functions are needed as single excitations (2s --f c&) 
in an accurate wavefunction for the ground state of the carbon atom, for which the 
HartreeFock function has the form ls22s22p2. The entries in Figure 1 called 
“Eigenvalue Round Off Error” give a good indication of the accuracy of the 
eigenfunctions produced. In all cases tested so far, the eigenfunctions have proved 
exact to at least 13 decimal digits. 



FIG. 1. Computer output of the three sP eigenfunctions for the orbital occupancy 2s2padl . 
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A summary of several other examples is given in Table I. For comparison with 
the projection operator program of Rotenberg [8], one of the examples consits of 
the five 2P eigenfunctions corresponding to the orbital occupancyf’. Rotenberg’s 
time to calculate these five functions was at least 25 minutes on the IBM 7090, 
while the present program took 2.1 minutes on the IBM 360/67 (believed equivalent 
to about 8 minutes on the 7090). 

TABLE I 
EXAMPLES OF L-S EIGENPUNCTIONS BY DIRECT DIAGONALIZATION 

Orbital occupancy Symmetry 

IS~PIP, ?s 

lS2.7P,P*2P4 aP 
lS2SP1P*2P4 ID 
2sd12p= ‘P 
2Wm4 ?S 
2-W4fi aP 
f7 8P 
2 $D 

Number of Number of linearly IBM 360/67 
Slater independent Ls execution time, 

determinants eigenfunctions minutes 

18 2 0.02 
106 27 1.44 
84 14 0.98 
14 3 0.01 
52 4 0.24 

179 18 3.53 
114 5 2.10 
96 9 2.79 

Karayianis [l 1 ] has determined the number and types of terms which arise from 
the configurations g”. Wybourne [12] has further classified the gn terms according 
to the irreducible representations of the higher groups R, and U, . During the 
testing of the present computer program, certain discrepancies were found between 
the results of Karayianis and those of Wybourne. In particular, the numbers of 
sextet (S = 5/2) terms arising from g9 are in disagreement. The present results, 
which were obtained by a procedure completely different from that of Karayianis 
or Wybourne, agree with those of Karayianis. The present authors believe that 
Wybourne has omitted some of the g9 sextet terms in his analysis of the problem. 
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